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Abstract

Thermal wave is a very interesting phenomenon in which heat is transported in the wave mode. It is different from the ordinary Fou-
rier heat transfer discipline in which heat is transported in the diffusive mode. In the present study, transient thermal wave (second sound
wave) heat transfer in He II (superfluid helium) is numerically studied. Quantized vortices in He II, a phenomenon related to the super-
fluid nature, which is an important factor affecting the behavior of the thermal wave has been taken into account. The present results
show that the shape of the thermal wave does not deform seriously and the amount of the heat contained in and transported by the
thermal wave does not decrease as the thermal wave transmits along the channel when it is free from the quantized vortices; while
the shape of the thermal wave starts to deform at the moment of the emission of the thermal wave and the amount of the heat trans-
ported by the thermal wave decreases when it is subject to the quantized vortices. The deformation is in stronger magnitude in the case of
the larger heat flux. The surplus amount of the heat which cannot be carried away by the thermal wave accumulates in the thermal
boundary layer formed by the dense quantized vortices and then is transferred in a diffusion-like mode. It is found that Gorter–Mellink
equation is not suitable to describe the transient heat transfer process in He II.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermal wave is a very interesting phenomenon in
which heat is transported in the wave mode. Ordinarily,
heat is considered to be transported in a diffusive way,
which is generally described by the diffusive equation for-
mulated as

oT
ot

¼ a
o2T
ox2

ð1Þ

However, Eq. (1) is not adequate enough to describe the
heat transfer process in some cases, such as, high intensity
laser heating, and so on, where the thermal wave heat
transfer equation should be used. A classical thermal wave
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equation was proposed by Cattaneo [1] and Vernotte [2],
which is generally called C–V equation
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ox2

ð2Þ

Essentially, Eq. (2) is hyperbolic and it supports a solution
that the temperature transmits as a wave at the speed of c.
One implication in Eq. (1) is the infinite heat propagation
speed which is obviously questionable. Nevertheless, the
relaxation time s is very small and the diffusive equation
is commonly applicable. Strictly speaking, there is still no
experimental proof that supports the classical thermal
wave equation.

The first experimental evidence of the thermal wave
might be the successful detection of the second sound wave
in superfluid helium (He II) which was carried out by Pesh-
kov [3]. Liquid helium exists in two phases, He I and He II,
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Nomenclature

b steepening coefficient
BL mutual friction coefficient
c speed of the thermal wave
C heat capacity
f thermal conductance parameter or thermody-

namic quantity
Fns mutual friction term
h Planck constant
L quantized vortex line density or length
m mass of the helium atom
P pressure
q heat flux
Q heat or energy
s entropy
t time
T temperature
u sound speed
u10 first sound wave (pressure wave) at equilibrium
u20 second sound wave (thermal wave) at equilib-

rium
v velocity
x distance
y arbitrary quantity

Greek symbols

a thermal diffusivity

c quantized vortices source coefficient
g viscosity
h non-dimensional temperature
j h/m, quantum of superfluid circulation
l chemical energy
q density
s relaxation time
v1 quantized vortices evolution coefficient
v2 quantized vortices decay coefficient
U x/t3/2

W DTt3/2

D difference in quantity

Subscripts

b superfluid helium bath
s superfluid or isentropic
n normal fluid
ns relative value between the normal fluid and

superfluid
k quantity at k point
V constant volume
P constant pressure
L quantized vortex line density
c critical
h heating
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separated by a phase boundary commonly called the k-line.
Under saturated vapor pressure condition transition from
He I to He II occurs at the temperature of Tk = 2.1768 K
(ITS90) which is generally called the k-point. There is no
latent heat associated with this transition as it is a kind of
second order phase transition. The specific heat along the
saturated vapor pressure line becomes infinite discontinu-
ously at the k-point. He I, a liquid phase above Tk, is an
ordinary viscous liquid; while He II, a liquid phase below
Tk, exhibits the superfluidity, which can flow through a very
narrow channel in the order of lm without viscous drag.

The theory used to describe He II is Landau�s two-fluid
model. According to this theory, He II comprises of two
components, a superfluid and a normal fluid components.
The superfluid component is considered to be reduced to
the ground state in energy level. The normal fluid compo-
nent is in excited state and behaves like an ordinary viscous
fluid. Therefore the superfluid component has zero viscos-
ity and zero entropy, while the normal fluid component has
finite viscosity and bears total entropy. They can flow
through each other without any mutual interaction, and
the superfluid component can flow through so narrow a slit
that the normal fluid component cannot do. The superfluid
and normal fluid components have their own density fields
and velocity fields. The total density and the total mass
flow rate are given by
q ¼ qs þ qn ð3Þ
qv ¼ qsvs þ qnvn ð4Þ

The ratio of the superfluid density to the total density var-
ies from 1 to 0 as the temperature increases from below 1 K
to the k-temperature, while the ratio of the normal fluid
density exhibits the contrary behavior. There are many
unusual phenomena associated with He II, such as infinite
thermal conductivity, fountain effect, second sound wave,
and so on.

One of the most interesting characteristics of He II is the
ability to transmit two kinds of sound wave: first sound
wave and second sound wave. The former is a kind of ordin-
ary pressure wave, the latter is a kind of thermal wave. The
investigation of the sound propagation by small perturba-
tion method is carried out in Refs. [4,5], and the wave
speeds of the two kinds of sound wave can be written as

u ¼ u10 ¼
oP
oq

� �1=2

s

ð5Þ

u ¼ u20 ¼
qss

2T
qnCV

� �1=2

s

ð6Þ

Two types of sound wave preserve different wave speed.
The first sound wave corresponds to an ordinary pressure
wave in an Euler fluid. It should be noted that in this sound
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wave mode, the normal fluid and superfluid components
move in phase. The propagation speed of it is about
200 m/s. On the other hand, there is no pure mass flow
from macro-point of view in the thermal wave, but a rela-
tive motion between the normal fluid and superfluid com-
ponents, so-called counterflow. The pressure variation
associated with the thermal wave can be negligible when
the amplitude of it is small enough. The thermal wave
propagates at a speed of about 20 m/s, the propagation
speed of the thermal wave is calculated from Eq. (6) by
assuming infinitely small amplitude. A strong non-linear
feature appears when the amplitude of the thermal wave
is large, which cannot be regarded as isentropic anymore.
In such a case, the propagation speed of the thermal wave
becomes the wave amplitude DT dependent. The propaga-
tion speed of a point with a temperature increase DT in the
thermal wave is described by the second order theory [5]

u ¼ u20 1þ DT
o

oT
ln u320

CP

T

� �� �
¼ u20 1þ b

DT
T

� �
ð7Þ

where, u20 is the speed of the thermal wave forDT ! 0,DT is
the temperature increase within the thermal wave, b is steep-
ening coefficient which is the temperature dependent. When
the temperature T is smaller than 1.88 K, the coefficient b is
positive, which indicates that points with larger wave ampli-
tude DT in the thermal wave travel faster than that with
smaller wave amplitude DT, and so the leading edge remains
vertical and forms a shock, called front thermal shock wave;
on the other hand, when the temperature T is larger than
1.88 K, the coefficient b is negative, a discontinuity is formed
at the back of the thermal wave, then it is called back ther-
mal shock wave. When the temperature T is slightly lower
than 1.88 K, where the coefficient b is quite small, a heat
pulse with larger amplitude may develop into a double ther-
mal shock wave in which discontinuity appears both at the
front and at the back of the thermal wave.
2. Two-fluid model and the quantized vortices

The hydrodynamic behavior of He II can be well
described by Landau�s two-fluid model. In addition to the
equations for continuity, conservation of entropy and
conservation of the momentum which are similar to the
equations used to describe the ordinary fluids, another
equation depicting the motion of the superfluid component
is still needed. The two-fluid model can be formulated as

oq
ot

þr� ðqvÞ ¼ 0

oðqsÞ
ot

þr� ðqsvnÞ ¼ 0

qsovs
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rp�qnqs

2q
rv2nsþgnrv2n

ð8Þ
these formulas in Eq. (8) can be used to describe the isen-
tropic process happening in He II. It is interesting to see
that when He II temperature approaches k-temperature,
qs approaches 0, and the fourth formula is reduced to be
Navier–Stokes equation; and if He II temperature ap-
proaches absolute zero, qn approaches 0, and then the third
formula becomes the Euler equation. In the numerical cal-
culation, it is more convenient to re-write Eq. (8) into an-
other form. In the case of the one-dimensional problem,
it is written as

oU
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þ oE
ox
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ð9Þ

The vector B on the right side of Eq. (9) is zero when a
hydrodynamic process occurring in He II can be regarded
as isentropic. Eq. (9) can be considered as the Euler equa-
tion in the case of superfluid hydrodynamics in the ideal
level. However, when the relative velocity between the
normal fluid and superfluid, vns, exceeds a certain critical
value, vc, the state of He II will become superfluid turbulent
[6–9], in which the hydrodynamic behavior of He II is dif-
ferent from that in the ideal situation. In superfluid turbu-
lent state an additional interaction between the normal
fluid and superfluid mediated by the quantized vortices will
have to be taken into account. This interaction, named mu-
tual friction, was first introduced by Gorter and Mellink
[10] to help to explain the experimental heat transfer data
in He II. In order to determine the macroscopic mutual
friction force from the microscopic distribution of the
quantized vortices, the connection between the mutual fric-
tion Fns and the vortex line density (VLD) L (i.e. length
of the vortex line in the unit volume) was first proposed
by Vinen [11] from the experiments

F ns ¼
j
3

qsqn

q
BLLvns ð10Þ

where, BL is a parameter related to the mutual friction in
He II. Eq. (10) is widely accepted and adopted in the liter-
ature [6,12–14], and thus, this formula is adopted to de-
scribe the connection between the mutual friction force
and the quantized vortices and it is used the numerical
calculation.

In superfluid turbulent state, the isentropic process
breaks down and it becomes irreversible. Consequently,
the influential effect of the mutual friction on the hydro-
dynamic behavior of He II has to be properly dealt
with. Thus, some additional items representing energy
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dissipation and mutual friction are added to the right sides
of the corresponding formulas in Eq. (8). And then, the
non-zero items in vector B represent energy dissipation,
mutual friction and the dissipation due to the viscosity of
the normal fluid component, respectively. l is the chemical
energy defined as

dl ¼ �sdT þ 1

q
dp � 1

2

qn

q
dv2ns ð11Þ

Feynman [15] firstly pointed out that the turbulent He II
state is the result of the quantized vortex lines. And later,
Vinen [11,16–18] proved experimentally that the vortex
lines in He II are quantized and proposed a phenomenolog-
ical model to describe the behavior of the quantized vorti-
ces on the base of experiments. In his model, the evolution
and the decay of the vortices have both been taken into
account and finally led to the following vortex line density
(VLD) equation:

dL
dt

¼ v1BLqn

2q
vnsL3=2 � v2h

2pm
L2 ð12Þ

where, the first term at right side is responsible for the evo-
lution of the quantized vortices, and the second term is
responsible for the decay of the quantized vortices. The
parameters, v1 and v2 are describing the interaction be-
tween the normal fluid component and the quantized vor-
tices associated with superfluid component which has to
be determined experimentally. However, the above equa-
tion will lead to a problem if the initial quantized vortex
line density L is zero, and the time for the quantized vorti-
ces to reach the steady value will be infinite which is obvi-
ously not correct. A source term cjvnsj5/2 was added to Eq.
(12) in order to correct this shortcoming, in which the coef-
ficient c is a strongly temperature dependent parameter.
The coefficients v1, v2 and c are temperature dependent
and their values used in the calculation are cited from
[11]. It should be noted here that the quantized vortices is
considered to be isotropic in Vinen�s VLD equation and
one important assumption made in the present study is that
the network of the quantized vortices generated by the
propagation of the thermal wave is also isotropic.

The above Vinen�s equation actually describes only the
stationary condition in which the vortex line density is
independent of the spatial distribution. This divergence is
obvious when the hydrodynamic process cannot be
regarded as stationary. Nemirovskii and Lebedev [19] mod-
ified VLD equation by adding a term of div(vLL) to the left
side of Eq. (12). Thus, the field property of the quantized
vortices can be introduced into VLD equation and it is
re-written as

oL
ot

þ o

ox
vLLð Þ ¼ v1BLqn

2q
vnsL3=2 � v2h

2pm
L2 þ c vnsj j5=2 ð13Þ

where vL is drift velocity of the vortices tangle, which is in
the order of the velocity of the superfluid component, vs [20].

The hydrodynamics of He II can be understood by com-
bining Landau�s two-fluid model and the phenomenologi-
cal description of the quantized vortices proposed by
Vinen [11,16–18]. A group in Max-Planck institute investi-
gated the thermal wave in He II both experimentally and
theoretically, and the propagation of the thermal wave in
convergent channel was also carried out [14,21]. Nemirov-
skii and Fiszdon [22] intensively reviewed the development
of equations for the description of the hydrodynamic pro-
cess in He II. To solve these equations, Kondaurova et al.
[23] and Fiszdon and Schwerdtner [24] expanded all the
hydrodynamic equations into a power series and analyzed
numerically to investigate the propagation of the thermal
wave in the unperturbed He II bath. In their analysis, the
absence of the mass transfer was generally assumed, which
directly led to qv = 0. This assumption is valid when the
thermal wave is free from the quantized vortices and
the amplitude of the thermal wave is small. Nevertheless,
the mass transfer and the influence of the quantized vorti-
ces cannot be negligible when a large amplitude thermal
wave is propagating in He II. Murakami and Iwashita
[12] computed the propagation of the thermal wave in He
II by using the two-fluid model and Vinen�s VLD equation
directly, and no more assumption was used in his analysis.
However, in such an approach, the dependence of the ther-
modynamic quantities on v2ns is required, which was not
used in their computation. Later, Shimazaki et al. [25] con-
ducted measurement of the thermal wave in a channel and
experimentally investigated the influential effect of the
quantized vortices on the thermal wave in detail.

In the present paper, the propagation of the thermal
wave in a channel immersed in He II is numerically inves-
tigated. The propagation of the thermal wave both free
from and subject to the quantized vortices is studied. The
heat transport characteristic of the thermal wave in the
interaction with the quantized vortices is also studied and
the results are compared to the results obtained by using
Gorter–Mellink equation as well as the experimental
results in the literatures.

3. Numerical scheme

The computation model is shown in Fig. 1(a). One pla-
nar heater is placed at one end of the channel and a rectan-
gular heat pulse with the heat flux q and the heating
duration th is input into He II from the heater. Conse-
quently, the thermal wave emitted in He II is a one-dimen-
sional planar wave, which can be described by solving the
one-dimensional two-fluid model, i.e. Eq. (9), with Vinen�s
VLD equation, i.e. Eq. (13). The boundary condition at the
heater surface can be formulated as

qinput ¼ q; 0 < t 6 th

q ¼ 0; t > th
ð14Þ

the heat transport in He II can be written as q = qsTvn be-
cause the entropy is only associated with the normal fluid
component. At the end of the channel, the mass transfer
qv = qsvs + qnvn = 0 because of the rigid heater surface,
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Fig. 1. (a) The schematic illustration of the computational model of the
thermal wave in He II. (b) The measure for the determining of the
thermodynamic quantity f(T,P).
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thus one has vns = q/qssT as the boundary condition by
combining Eqs. (3) and (4). The boundary conditions are
defined in the following manner: on the basis of the fact
that the thermal wave reflects on the solid boundary, they
are considered as the mirror conditions, i.e. the imaginary
grid points next to the boundary at both sides are symmet-
ric. Thus, the velocity v agrees vleft = �vright at the bound-
ary, and the thermodynamic quantities and the vortex line
density agree yleft = yright. The boundary condition at the
other end can be treated in the same manner. However,
the other end of the channel can be treated as the free
boundary unless the thermal wave propagates to and re-
flects at the boundary.

Unlike the ordinary fluids, such as air or water, etc., the
thermodynamic quantities of He II is not fully formulated
but tabulated [26]. The interpolating method has to be used
to determine the thermodynamic quantities. The linear
interpolation is generally carried out on a P–T plane to
determine a thermodynamic quantity f(T,P). The interpo-
lation is carried out by using four points, f(T1,P1),
f(T1,P2), f(T2,P1), f(T2,P2), where T2 > T1, and P2 > P1.
It is first carried out along T or P axis to determine f1
and f2. The interpolation is carried out first along T axis
as an example, as can be seen in Fig. 1(b)

f1 ¼
f ðT 2; P 1Þ � f ðT 1; P 1Þ

T 2 � T 1

� ðT � T 1Þ þ f ðT 1; P 1Þ ð15Þ

f2 ¼
f ðT 2; P 2Þ � f ðT 1; P 2Þ

T 2 � T 1

� ðT � T 1Þ þ f ðT 1; P 2Þ ð16Þ
and then the interpolation is carried out along another axis

f ðT ; P Þ ¼ f2 � f1
P 2 � P 1

� ðP � P 1Þ þ f1 ð17Þ

After the interpolation is finished, the thermodynamic
quantities is corrected by the well-known relation [4]

qðP ; T ; vnsÞ ¼ qðP ; T Þ þ 1

2
q2v2ns
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qn

q
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sðP ; T ; vnsÞ ¼ sðP ; T Þ þ 1

2
v2ns

o

oT
qn

q

� �

lðP ; T ; vnsÞ ¼ lðP ; T Þ � 1

2

qn

q
v2ns

ð18Þ

Although there are many modern numerical methods
can be used to solve the Euler equations numerically, such
as TVD scheme et al. These methods cannot be used since
it is very difficult to obtain the Jacobian Matrix of the
superfluid hydrodynamic equations, e.g. Eqs. (9) and
(13). Thus, it seems more plausible to use MacCormack
scheme with the flux-corrected transport (FCT). The
MacCormack two-step predictor and corrector method
has second order accuracy in both time and space steps.
FCT is used to suppress numerical oscillation and to
preserve physical discontinuity of the wave front. The
standard Mac-FCT method includes eight steps, the detail
of which can be found in [27].
4. Results and discussion

4.1. The thermal wave free from the quantized vortices

The propagation of the thermal wave in channel is intrin-
sically one-dimensional problem, although there may exist
fluid–wall interaction. Turner [28] has proved such a prob-
lem is one-dimensional, and a direct proof was provided by
Torczynski et al. [29] by conducting visualization experi-
ments. Thermal wave free from the quantized vortices is
investigated by using one-dimensional two-fluid model
without Vinen�s VLD equation in the present study. Shown
in Fig. 2 is the calculation results of the propagation of the
thermal wave in the channel, the time interval between
the next thermal waves in the figure is 2 ms. It is seen from
the figure that the amplitude of the thermal wave almost
does not change as it propagates along the channel when
the input heat flux is not so large, e.g. 10 W/cm2, and its
shape keeps almost the same as that of the input heat pulse
when the thermal wave travels not far from the end of the
channel. However, when the input heat flux is large, e.g.
30 W/cm2, the shape of the thermal wave gradually
changes and the amplitude decreases as it travels along
the channel, which is due to the non-linear feature of He
II thermo-fluid dynamics. Furthermore, it is seen from
the figure that the shape of the thermal wave gradually
changes and the rear portion of the thermal wave begins
to expand and becomes longer along the channel. The
traveling speed of the thermal wave depends on the temper-
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Fig. 2. The calculation results of the propagation of the thermal wave free
from the quantized vortices along the channel at two heat fluxes.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

10W/cm2

20W/cm2

30W/cm2

R
at

io

Time (ms)

Tb=1.7K, th=1ms

Fig. 3. The ratio of the heat contained in and carried away by the thermal
wave to the total input heat when free from the quantized vortices at
different heat fluxes.

P. Zhang et al. / International Journal of Heat and Mass Transfer 49 (2006) 1384–1394 1389
ature amplitude of the thermal wave, as shown by Eq. (7).
As can be seen from the thermal waves at 20 ms in Fig. 2(a)
and (b), the thermal wave in Fig. 2(b) travels faster than
that in Fig. 2(a) does, which is due to the point in the ther-
mal wave with larger temperature amplitude has larger
traveling speed, and it will then catch up the former point
and forms a thermal shock wave. The small temperature
fluctuation portions in the rear of the thermal waves are
caused by the numerical oscillation.

The heat can be transported in a wave mode due to the
fact of the thermal wave nature. The heat contained in and
carried away by the thermal wave along the channel can be
calculated as

Q ¼
Z L

0

qðT ÞCPðT ÞDT dx ð19Þ

Shown in Fig. 3 is the ratio of the heat being carried away
by the thermal wave to the total input heat. It is seen from
the calculated results that almost all the input heat is carried
away by the thermal wave. Although it is seen from the fig-
ure that the ratio of the heat being carried away decreases a
little bit as the input heat flux increases, it is mainly attrib-
uted to the numerical error and the small dissipation effect
of the FCT scheme. It can be concluded from this fact that
the input heat is totally carried away by the thermal wave
when it is free from the quantized vortices.
4.2. The thermal wave subject to the quantized vortices

When the thermal wave is subject to the quantized vor-
tices, there appear more complicated phenomena. The ini-
tial VLD, which can be regarded as the background of the
quantized vortices, ranges generally from 1 · 104 cm�2 to
1 · 106 cm�2 [30]. Shown in Fig. 4 are the calculation
results of the propagation of the thermal wave along the
channel at different heat fluxes, the time interval between
the next thermal waves in the figure is 2 ms. It is seen that
the thermal wave differs a lot from the results in Fig. 2 as it
propagates along the channel. The amplitude of the ther-
mal wave decreases and the shape of it deforms gradually
mainly due to the interaction with the quantized vortices.
It is seen from Fig. 4 that the deformation of the thermal
wave is generally in stronger magnitude and the amplitude
of the ‘‘tail’’ behind the thermal wave is larger when the
thermal wave does not travel far from the heater. The
‘‘tail’’ behind the thermal wave slowly decays and its ampli-
tude decreases as the thermal wave propagates along the
channel. The deformation of the thermal wave starts at
moment of the emission of the thermal wave from the hea-
ter, which is more evident in the larger heat flux case, as can
be seen in Fig. 4. The shape of the thermal wave deforms
more as the heat flux increases, because the evolution of
the quantized vortices is much quicker in the larger heat
flux case [31] and VLD will also reach a larger steady value
due to larger relative velocity vns, as shown by the first term
at the right hand of Eq. (13).

The temperature histories at several fixed points are
shown in Fig. 5(a). It is seen from the figure that a large
temperature overshoot is following the thermal wave when
the fixed point is close to the heater surface, say, 0.5 mm,
which results from the thermal boundary layer caused by
the mass of the quantized vortices. As the distance from
the heater surface increases, this temperature overshoot



Fig. 4. The propagation of the thermal wave subject to the quantized
vortices along the channel at different heat fluxes, the initial VLD =
2 · 105 cm�2.

Fig. 5. The comparison of the temperature histories at different fixed
distances above the heater surface to the experimental and theoretical
results cited from [24]. (a) The present calculated results, (b) the calculated
results cited from [24], (c) the experimental results cited from [24]. The
distances are 0.5 mm, 1 mm, 2 mm and 5 mm. In Ref. [24], a parameter tR
is used to refer the repetition time of the release of the thermal wave. It is
believed that when tR is small, the background level of VLD is generally
higher because the frequent release of the thermal wave in He II will cause
the VLD does not have enough time to recover to the previous level, thus
the next evolution of VLD will start from a relatively higher level; and vice
versa, tR = 5 s. The initial VLD of is 1 · 106 cm�2, the same as that used in
[24].
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decreases quickly. In the figure, the temperature rise is nor-
malized to DT0 = q/qCPu20, the temperature amplitude of
the thermal wave at equilibrium. It is seen from Fig. 5 that
the temperature increases at those points are quite quick
while the temperature decreases are rather slow, which
proves that the developing of the thermal boundary layer
is very quick, and the decay of it is very slow and will last
for a long time. Shown in Fig. 5(b) and (c) are the calcu-
lated results and the experimental ones cited from [24].
As can be seen from the figure, the present calculated
results and experimental ones agree quite well with each
other. The calculated results show the same time instant
of the temperature overshoot as the experimental results
do. As can be seen from more results shown in Fig. 6,
the present calculated results agree rather well with the
experimental ones and show the improvement to the calcu-
lated results in Ref. [24]. As the distance of the fixed points
from the heater surface increases, the range of the temper-
ature overshoot becomes wider and the amplitude of it also
decreases.



Fig. 6. The comparison of the temperature histories at different fixed
distances above the heater surface to the experimental and theoretical
results cited from [24]. (a) The present calculated results, (b) the calculated
results cited from [24], (c) the experimental results cited from [24].
tR = 0.5 s. The initial VLD = 1 · 106 cm�2 is the same as that used in [24].
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Fig. 7. (a) The computational temperature histories at different fixed
distances above the heater surface, The distances are 1 mm, 2 mm, 5 mm,
10 mm, 20 mm and 30 mm, (b) the temperature distribution close to the
heater surface along the channel at different time instants, (c) the
temperature distribution of the diffusive heat transfer process as described
by Fourier law.
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The above numerical calculation is carried out in the
case of the small heat flux. When the heat flux increases,
the temperature overshoot for the fixed point close to the
heater surface increases a lot, which can be attributed to
more heat accumulated in the thermal boundary layer
due to the effect of the quantized vortices, as can be seen
in Fig. 7(a). It is seen from Fig. 4 that the ‘‘tail’’ behind
the thermal wave is very long and in high tempera-
ture amplitude at larger heat flux, which is due to the slow
decay of the quantized vortices tangle. Shown in Fig. 7(b)
is the temperature distribution in the channel close to the
heater surface. It is seen from the figure that a higher tem-
perature region forms close to the heater surface, and the
temperature of it gradually decreases. Although the heat
is transported in the wave mode by the thermal wave,
the superfluidity feature locally breaks down in the vicinity
of the heater surface. Heat accumulates in the thermal
boundary layer and is then transported in a diffusion-like
mode.
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Shown in Fig. 7(c) are the results of the heat transfer by
Fourier heat transfer law described as

oh
ot

¼ o2h
ox2

ð20Þ

with the boundary condition of

x ¼ 0; q ¼ � oh
ox

x ¼ L; h ¼ 0
; 0 < t 6 th

�

and the initial condition of h = 0. The results shown in the
figure are non-dimensional. The arrow in the figure indi-
cates the time increase. It is found from Fig. 7(b) and (c)
that the decay process of the thermal boundary layer
formed by the quantized vortices tangle is very similar to
the diffusive heat transfer process described by Fourier
law. Thus, the slow decay of this high temperature region
close to the heater surface is named diffusion-like. The ther-
mal boundary layer is remarkable in the case of the larger
heat flux, while it is rather weak at smaller heat flux.

The similar method used in Section 4.1 is adopted to
estimate the heat contained in and transported by the ther-
mal wave. The thermal wave portion in this case is defined
as following: the amplitude of the ‘‘tail’’ of the thermal
wave gradually decreases in amplitude and becomes longer
in spatial distribution, when the ‘‘tail’’ reaches the minimal
value, then the end of the thermal wave is determined. It is
defined in this manner because the gradual increase of tem-
perature beyond the ‘‘tail’’ is caused by the quantized vor-
tices tangle, which is essentially not the thermal wave
portion. It is seen from Fig. 8 that the ratio of the heat
transported by the thermal wave to the input heat gradu-
ally decreases as it propagates along the channel. This is
because the quantized vortices are rapidly induced by the
propagation of the thermal wave in the unperturbed He
II, the counterflow between the normal fluid and superfluid
components is hampered by the quantized vortices, which
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Fig. 8. The ratio of the heat contained in and carried away by the thermal
wave to the total input heat when subject to the quantized vortices at
different heat fluxes.
in turn impedes the heat transport by the thermal wave.
With the evolution of the quantized vortices, a portion of
the heat remains un-transported by the thermal wave and
is then gradually transported in the diffusion-like process.
It is further understood from the figure that the ratio of
the heat transported by the thermal wave to the total input
heat decreases as the heat flux increases.

When the temperature is larger, e.g. 2.1 K, the propaga-
tion of the thermal wave is shown in Fig. 9. It is seen that
the shock front forms at the back of the thermal wave
because the steepening coefficient is negative in this case.
The interaction of the quantized vortices with the thermal
wave causes the ‘‘tail’’ of the thermal wave becomes longer.
It is interesting to see that the heat contained and trans-
ported by the thermal wave decreases a lot compared to
that in the case of lower temperature, say, 1.7 K, which is
due to the less efficient heat transfer capability of He II
at higher temperature close to the k-temperature.

Dresner [32] analyzed the heat transfer process by using
Gorter–Mellink equation, which is similar to Fourier law
in the form and is formulated as

qCP

oT
ot

¼ f
o

ox
oT
ox

� �1=3

ð21Þ

where f is the thermal conductance parameter of He II by
analogy to the thermal conductivity in Fourier law, f is in
the unit of W/cm5/3 K1/3.

Essentially, Gorter–Mellink equation describes the heat
transfer in He II turbulent state where the heat is consid-
ered being transported in a diffusion-like process. The anal-
ysis result of Gorter–Mellink equation is as following [32]:

U ¼ 4=3
ffiffiffi
3

p
f �3=2ðqCPÞ�1=2Q2

ðQ4ðqCPÞ2f �6W4 þ e4Þ1=2
ð22Þ

where e = 2.855, Q is the total input heat, W = x/t3/2,
U = DTt3/2. It can be understood from the above numerical
analysis that the diffusion-like heat transfer portion is fol-
lowing the thermal wave portion as the thermal wave is
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Fig. 9. The calculation results of the propagation of the thermal wave
along the channel at 2.1 K.
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propagating along the channel. Thus, heat is transported
by both the thermal wave and the diffusion-like process.
Shown in Fig. 10(a) is the comparison of the numerical
and experimental results of heat transfer in He II. The solid
and long-dashed lines represent the present numerical re-
sults and the symbols are the experimental results from
[31] which have been re-plotted. In the figure, only the
numerical results for t = 2 ms and t = 8 ms are shown for
the clarity, the results of t = 3 ms to t = 7 ms lie in-between
t = 2 ms and t = 8 ms. It can be understood from the figure
that the numerical results and the experimental ones agree
quite well with each other. It is seen from the figure that the
thermal wave portion is displayed as a peak, which is essen-
tially due to the transformation of the numerical results
according to W = x/t3/2 and U = DTt3/2. The experimental
measurement in Ref. [31] was carried out from 2 ms to
8 ms (the moment when the heat flux is started to be re-
leased in He II is denoted as 0 ms) in the space of from
the heater surface at x = 0 to x = 30 mm. Therefore, the
thermal wave portion is absent in the experimental results
because the propagation of the thermal wave at 2 ms has
already reached around x = 40 mm by taking the propaga-
tion speed of the thermal wave as about 20 m/s, which is
beyond the measurement range within x = 30 mm. The
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Fig. 10. The comparison of the present computational heat transfer
results to the results predicted by Gorter–Mellink equation and the
experimental results cited from [31]. (a) q = 20 W cm2, th = 1 ms,
Tb = 1.7 K, VLD = 2e5 cm�2, (b) q = 15 W cm2, th = 1 ms, Tb = 1.7 K,
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experimental results here were essentially the diffusion-like
heat transfer. In Dresner�s analysis, one implication is that
the heat was totally transported by the diffusion-like heat
transfer mode, which is generally applicable in a steady
heat transfer process or long time after the heating is shut
off. However, Gorter–Mellink equation is not suitable to
describe the transient heat transfer process in He II because
a portion of the heat is transported by the thermal wave.
The dotted line in the figure is the result of Gorter–Mellink
equation. The heat transfer is generally underestimated by
Gorter–Mellink equation, which results in the higher tem-
perature close to the heater surface and lower temperature
far from the heater surface, as can be seen from the figure.
It is worth noting here that the heat cannot be diffused by
superfluid since it is inviscid. However, the mutual friction
between the superfluid and normal fluid components
mediated by the quantized vortices might lead to the diffu-
sion-like heat transfer in He II. As can be understood from
a recent study, the possibility of the diffusion of a packet of
quantized vortices has been reported [33], which was
studied by applying numerical experiments to determine
the evolution of the initially localized quantized vortices,
although it is not related to the heat transfer in He II
directly.

Shown in Fig. 10(b) is another result of the heat trans-
fer in He II. Similar to Fig. 10(a), only the results of
t = 0.75 ms and t = 3 ms are shown in the figure. As can
be seen from the figure, numerical results show better
agreement than Gorter–Mellink equation does. It is proven
once more that Gorter–Mellink equation cannot be used in
the transient heat transfer process. In such a case, numeri-
cal calculation should be carried out.

5. Conclusion

The transient thermal wave heat transfer in He II is
studied numerically by using Landau�s two-fluid model
with Vinen�s vortex line density equation. The following
results are drawn from the present study:

The thermal wave almost does not deform and the input
heat can be totally carried away by the thermal wave when
it is free from the quantized vortices. The deformation of
the thermal wave starts at the moment of the emission of
the thermal wave and the wave amplitude gradually
decreases as the thermal wave propagates along the chan-
nel, and the input heat cannot be totally transported by
the thermal wave when it is subject to the quantized vorti-
ces. As the heat flux increases, the magnitude of the defor-
mation of the thermal wave becomes stronger and the
amount of the heat contained in and carried away by the
thermal wave decreases. And as a result, the surplus
amount of the heat accumulates in the thermal boundary
layer formed by the dense quantized vortices close to the
heater surface and results in large temperature overshoot,
which is due to the counterflow is hampered by the quan-
tized vortices. The heat contained in the thermal boundary
layer is then gradually transferred in a diffusion-like way
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similar to the heat transfer process described by Fourier
law, which is probably the diffusion of the thermal bound-
ary layer formed by the quantized vortices through vortex
reconnection. The present numerical results show quite
acceptable agreement with the experimental results and
Gorter–Mellink equation generally underestimates the heat
transport of He II, which results in higher temperature
close to the heater surface and lower temperature far from
the heater surface.
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